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ABSTRACT

Motivation: Linking experimental data to mathematical models in

biology is impeded by the lack of suitable software to manage and

transform data. Model calibration would be facilitated and models

would increase in value were it possible to preserve links to training

data along with a record of all normalization, scaling, and fusion

routines used to assemble the training data from primary results.

Results: We describe the implementation of DataRail, an open

source MATLAB-based toolbox that stores experimental data in

flexible multi-dimensional arrays, transforms arrays so as to

maximize information content, and then constructs models using

internal or external tools. Data integrity is maintained via a contain-

ment hierarchy for arrays, imposition of a metadata standard based

on a newly proposed MIDAS format, assignment of semantically

typed universal identifiers, and implementation of a procedure

for storing the history of all transformations with the array. We

illustrate the utility of DataRail by processing a newly collected set of

�22000 measurements of protein activities obtained from cytokine-

stimulated primary and transformed human liver cells.

Availability: DataRail is distributed under the GNU General Public

License and available at http://code.google.com/p/sbpipeline/

Contact: sbpipeline@hms.harvard.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

A fundamental goal of systems biology is constructing

mathematical models that elucidate key features of biological

processes as they exist in real cells. A critical step in realizing

this goal is effectively calibrating models against experimental

data. The challenges of model calibration are well recognized

(Jaqaman and Danuser, 2006) but we have found systematizing

and processing data prior to calibration to be tricky as well.

This is particularly true as the volume of data or the complexity

of models grows. Few information systems exist to organize,

store and normalize the wide range of experimental data

encountered in contemporary molecular biology in a suffi-

ciently systematic manner to maintain provenance and mean-

while retaining the adaptability necessary to accommodate

changing methods. Partly as a consequence, relatively few

complex physiological processes have been modeled using a

combination of theory and high throughput experimental data.

An information management system for experimental data

must record data provenance and experimental conditions,

maintain data integrity as various numerical transformations

are performed, describe data in terms of a standardized

terminology, promote data reuse and facilitate data sharing.

The most common way to achieve these requirements is

via a relational database management system (RDBMS,

see SBEAMS—http://www.sbeams.org—or Bioinformatics

Resource Manager for relevant examples; Shah et al., 2006).

Databases in biology resemble those previously developed for

business and have proven spectacularly successful in managing

data on DNA and protein sequences. In a relational database,

the subdivision of information and its subsequent storage into

cross-indexed tables follows a precise, predefined schema. The

granularity and stability of the schema allows an RDBMS to

identify and maintain links between disparate pieces of

information, even in the face of frequent read–write operations.

However, this power comes at a considerable cost in terms of

inflexibility. It is difficult for a relational database to

accommodate frequent changes in the formats of data or

metadata, and to incorporate unstructured information.
Whereas the sequence of a human gene represents valuable

information independent of how sequencing was performed or

of the individual from whom the DNA was obtained

(a statement that remains true despite the value of characte-

rizing sequence variations); such is not the case for measures of

protein activity or cellular state. Such biochemical and

physiological data are highly context dependent. Data on

ERK kinase activity, for example, is uninformative in the

absence of information on cell type, growth conditions, etc.

Moreover, a wide range of techniques are used to make

biochemical and physiological measurements, and both the

assays and the data they generate change over time, as new

methods are developed (e.g. in imaging see Swedlow et al.,
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2003). Context dependence and rapidly changing data formats

pose fundamental problems for databases because RDBMS

schemes are not easily modified.
Moreover, even if effective metadata standards are developed

to describe the context-dependence of experimental findings,

data from different experiments cannot be reconciled simply by

storing them in a single database. Subtle distinctions must be

made about different types of data and biological insight

brought to bear. Currently this is performed implicitly in the

minds of individual investigators, but we envision a future

in which the unique ability of mathematical models to formalize

hypotheses and manage contingent information makes them

the primary repositories of biological knowledge. As we work

towards a model-centric future, it is our contention that

information systems based solely on relational databases are

unnecessarily limiting; rarely do we modify a difficult experi-

ment simply to conform to a pre-existing database schema

(whereas conformity to uniform—even arbitrary—standards is

a strength for a business database). New approaches to data

management that reconcile competing requirements for flex-

ibility and structure are required.
One response to the challenges of systematizing biological

data has been the creation of lightweight data standards

focused on the most important metadata. Pioneered by the

Microarray and Gene Expression Data Society’s Minimum

Information about a Microarray Experiment (MIAME), these

‘minimum information’ approaches typically define a simple

data model that can be instantiated as an XML file, a database

schema, etc. A strength of ‘minimum information’ standards is

that they specify that subset of the metadata that is relatively

constant among ever-shifting and context-sensitive experi-

ments. The philosophy is that of the Pareto principle or 80-20

rule, namely that 80% of the information can be captured with

20% of the effort whereas the final 20% requires exponentially

greater effort. An underlying assumption is that a minimum

information standard successfully records the information

needed to make experimental data intelligible. In this article

we implement an information processing system, DataRail,

intended to bridge the gap between data acquisition and

modeling. A new minimum information standard (MIDAS) is

part of the DataRail system, but a series of additional tools are

also applied to maintain the provenance of data and ensure its

integrity through multiple steps of numerical manipulation.

DataRail is model- rather than data-centric in that the task of

creating and transmitting knowledge is invested in mathemat-

ical models constructed using the software, rather than the data

storage system itself, but it is designed to support existing

modeling tools rather than serve itself as an integrated

modeling environment. We illustrate this capacity in DataRail

using a large set of protein measurements derived from primary

and transformed hepatocytes; through the use of DataRail we

derive insight both into the biology of these cell types and the

optimal means by which to perform partial least squares

regression (PLSR) modeling of cue-signal-response data.

2 RESULTS

2.1 Design goals and implementation

To facilitate the collection, annotation and transformation of

experimental data, DataRail software is designed to meet the

following specific requirements (see Fig. 1): (i) serve as a stable

repository for experimental results of different types while

recording key properties of the biological setting and complete

information about all data processing steps; (ii) promote model

development and analysis via internal visualization and

modeling capabilities; (iii) interact efficiently and transparently

Fig. 1. Process diagram for model-centric information management in DataRail. Measurements generated using one or more methods (left side of

diagram) are processed to output new knowledge (right); hypothesis testing links modeling and measurement in an iterative cycle. Processes and

entities within the red box have been implemented; those outside the box remain to be completed; dotted lines denote external processes that have

been linked to DataRail. Experimental measurements are first converted into a MIDAS format using one or more routines (pink lozenges; see text for

details) and then used to assemble a multi-dimensional primary data array (green). Alternatively, an empty MIDAS-compliant spreadsheet is

generated using a Java utility and experimental values then entered. Algorithms for normalization, scaling, discretization, etc. transform the data to

create new data arrays (orange) that can then be modeled using internal or external routines. Finally, analysis and visualization assist in knowledge

generation. The calibration of kinetic and Boolean models is not shown explicitly, although it constitutes a critical and complicated step in the overall

workflow of systems biology that is as-yet external to DataRail.
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with external modeling and mining tools; (iv) meet new
requirements in data collection, annotation and transformation

as they arise and (v) facilitate data sharing and publication

through compatibility with existing bioinformatics standards.
A system meeting these requirements was designed in which

data is stored in a succession of regular multi-dimensional

arrays, known as ‘data cubes’ in information technology (Gray
et al., 1997), each representing transformations of an original set

of primary data. The integrity of data is maintained by tagging
the primary data with metadata referenced to a controlled

ontology, storing all arrays arising from the same primary data

in one file structure, documenting the relationships of arrays to
each other, storing algorithms used for data transformation

with data arrays and assigning each data structure a unique

identifier (UID) based on a controlled semantic. DataRail was
implemented as a MATLAB toolbox (http://www.mathworks.

com/) with scripting and GUI-based interaction and incorpor-

ating a variety of data processing algorithms. DataRail works
best as a component of a loosely coupled set of software tools

including commercial data mining packages such as Spotfire
(http://spotfire.tibco.com/) or public toolboxes for modeling. In

addition, DataRail is designed to communicate with a semantic

Wiki, to be described in a separate paper but available at the
DataRail download site, that is better designed for storing

textual information, such as experimental protocols, and that

documents DataRail’s use of UIDs.

2.2 System overview

Information in DataRail arising from a single set of experi-

ments is organized into a compendium, which consists of
multiple n-dimensional data arrays, each of which contains

either primary data or processed data (see Fig. 2). It is left up to

users to determine the breadth of experimental data included
within each compendium, but good practice is to group results

with similar experimental aims, biological setting or place of

publication into one compendium. DataRail also supports
creation of containers for multiple compendia known as

projects. The dimensionality of arrays containing primary

data is determined by the user at the time of import, making it
possible to accommodate a wide range of experimental

approaches and measurement technologies. For example,
measuring a few properties of many samples by flow cytometry

generates an array of different dimensionality than measuring

many variables in a few samples by mass spectrometry.

In practice, data in our laboratory can usually be described in

six dimensions: three for the experimental conditions (e.g. cell

type, cytokine stimuli and small-molecule treatment), one for

time, one for experimental replicates and one for actual

measurements.

Arrays of transformed data are generated from primary data

by applying numerical algorithms that normalize, scale or

otherwise increase accuracy and information content.

Algorithms used during data processing, along with the

values of all free parameters, are stored with each array to

maintain a complete record of all transformations performed

prior to data mining or modeling.

2.3 Test cases

We have tested DataRail on seven sets of recent data available

in our laboratories, containing between 5� 103 and �1.6� 106

data points. Each set had a unique structure and gave rise to

arrays with 4–6 dimensions (see Supplementary Table S1). Here

we discuss the analysis of a ‘CSR Liver compendium’, a cue-

signal-response dataset (Gaudet et al., 2005) comprising 22 512

measurements in primary human hepatocytes and a hepato-

carcinoma cell line (HepG2 cells; L.A. et al., unpublished data).

In this compendium, cells were exposed to 11 cytokine

treatments and 8 small-molecule drugs upon which the states

of phosphorylation of 17 signaling proteins (at 30min and 3 h)

and the concentrations of 50 extracellular cytokines (at 12 and

24 h) were measured using bead-based micro-ELISA assays.

2.4 Storing primary data and metadata

Tagging primary data with metadata is essential to its utility

and involves two aspects of DataRail: a new metadata standard

and a process for actually collecting the metadata.

The metadata standard is based on our proposed MIDAS

format (Minimum Information for Data Analysis in Systems

Biology) that is itself based on pre-existing minimum-informa-

tion standards such as MIACA (Minimum Information About

a Cellular Assay, http://miaca.sourceforge.net/). MIDAS is a

tabular (or spreadsheet) format that specifies the layout of

experimental data files that gives rise, upon import into

DataRail, to an n-dimensional data array. The MIDAS

format was derived from the ‘experimental module’ concept

in MIACA, with modifications required for model-centric data

management (see Fig. 3). Typically a MIDAS file is used to

Fig. 2. Containment hierarchy for DataRail. Individual arrays of primary or transformed data are gathered together into a MATLAB structure we

call a compendium; multiple compendia are linked together into a project. Each compendium contains a unique name (UID), a short textual

documentation, and a set of multi-dimensional arrays. Each array is stored together with simple metadata (name, free-text information, source,

algorithm, and free parameters used in array creation). The representation follows the conventions of UML (Unified Modeling Language) format,

indicating that a compendium contains one or more arrays, which contain one or more labels and zero or more parameters.
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input information from instruments into DataRail and to

export information from DataRail into other software that uses

spreadsheets. However, export from a data array to a MIDAS

file entails loss of information about data provenance and prior

processing steps. We are therefore in the process of implement-

ing a standardized format for exchanging DataRail files that

does not depend on the use of MATLAB files (see Section 3 for

details). Each row in a MIDAS table represents a single

experimental sample; each column represents one sample

attribute, such as identity (e.g. multi-well plate name or well

coordinate), treatment condition, or value obtained from an

experimental assay. A column header consists of two values:

(i) a two-letter code defining the type of column, (e.g. TR for

treatment, DV for data value), and (ii) a short column name

(e.g. a small molecule inhibitor added or a protein assayed).

The body of each column stores the corresponding value for

each row (sample) such as a plate/well name, reagent

concentration, time point, or data value (see Supplementary

Materials for details and example MIDAS spreadsheets).

MIDAS is designed to fulfill the need for data exchange and

analysis within a closely knit research group. It is not a stand-

alone solution for archival storage or publication and should be

implemented in conjunction with MIAME, MIACA or

DataRail itself.

The sequence of steps involved in entering metadata into

DataRail is designed to accommodate the rhythm of a typical

laboratory in which simple annotation is possible while

experiments are in progress, but detailed data analysis is
performed subsequently. As an experiment is being designed, a
MIDAS file specifying the dimensionality and format of the

data (treatments, time points, readouts, etc.) is created, and
scripts specialized to different instruments or experimental
methodologies are then used to add results to the ‘empty’

MIDAS file. Thus far we have written a script to import bead-
based micro-ELISA data generated by a Luminex reader
running BioRad software (Bio-Plex). We have also implemen-

ted a general purpose Java program for MIDAS file creation
that can be used to import data into DataRail, used as a stand-
alone application, or integrated into other software. Within

the MIDAS layout utility, wells that will be treated in a
similar or sequential manner are selected via a GUI and
appropriate descriptions of the samples added via pop-up tabs

(see Supplementary Fig. S1). When layout is complete, a
correctly formatted MIDAS file is generated, ready for the
addition of data. Lists that assist experimentation are also
created (these lists typically specify times of reagent addition,

sample withdrawal, etc.). We invite instrument manufacturers
to incorporate this utility into their software so that creation of
MIDAS-compliant files is automatic; the code is therefore

distributed under a non-viral caBIG open source license
developed by the National Cancer Institute. If a MIDAS file
has not been generated at the outset of an experiment, it is

possible to convert experimental data at any point prior to
import, but in this case MIDAS-associated support tools are
not available to help with experiments.

As mentioned above, DataRail need not be used in
combination with SBWiki, a wiki based on semantic web
technology (Berners-Lee, 2001). For the current discussion,

four features of SBWiki are important. First, a web form used
for upload prompts users to enter the metadata such as user
name, date, cell type, etc., required for full MIDAS compliance,

and this data is stored as a wiki page. Because continuous web
access is easy to arrange, even for geographically dispersed
instruments, users record metadata when files are first saved to

a central location. This is very important in practice because
metadata is rarely added when the process is cumbersome or
separated in time from data collection. Second, use of semantic

web forms makes it possible to create simple, familiar and easily
modified interfaces while collecting structured information.
In contrast, tools for accessing metadata in traditional

databases or XML files are more difficult to use and require
considerable expertise to modify. Third, as data is imported it is
assigned a UID by SBWiki itself, which directly encodes,

among other things, the type of data and the person who
created it (see Supplementary Materials). The assignment of a
UID makes it possible to track the origin of all data in

DataRail, independent of the array-compendium-project struc-
ture. Fourth, although metadata describing key aspects of
experiments are stored internal to the MIDAS file, complete

details of experimental protocols and reagents are stored in
SBWiki. Storage external to the MIDAS file allows complex
textual information to be modified and reused more easily.

Links from data arrays to external files are made via URLs that
follow the UID scheme described above and can use the
revision history in SBWiki to reference a specific version of a

protocol or reagent.

C.

A. B.

Code Full Name Type Description 
ID Identity MIDAS sample identifier, e.g., plate and well 

TR Treatment MIDAS experimentally controlled parameter  

DA Data Acquisition MIDAS measurement for a given time point 

DV Data Value MIDAS measured value for a DA  

DC Data Compendium SBWiki self-consistent dataset in MIDAS 

PJ Project SBWiki group of Compendia 

Fig. 3. Minimum information for data analysis in systems biology

(MIDAS). (A) A simplified map of a multi-well experiment in which

Akt phosphorylation is to be assayed at 0 and 30min in extracts from

cells treated, or not, with lipo-polysacharide (LPS) and a PI3-kinase

inhibitor (PI3Ki). (B) MIDAS representation of the experiment.

A column header consists of a two-letter code defining the type of

column and a short column name. For clarity headers are color-coded

to match the corresponding values on the plate map. The leftmost five

columns (codes ID: identity, TR: treatment, and DA: data acquisition)

are experimental design parameters and would be filled in before bench

work begins. The rightmost column holds measured data values (DV)

that are appended as data acquisition is performed. See Supplementary

Table S2 for a larger example. (C) A list of the type codes used for

MIDAS columns and a few relevant SBWiki types.
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When constructing the CSR Liver compendium, a spread-

sheet generated by Bio-Plex software was appended to a

MIDAS file, and a second MIDAS file containing data on total

protein concentrations was generated using a plate reader.

Overall three primary data arrays were created from CSR Liver

data: one recording phosphorylation states of 17 proteins at

three time points (0, 30min, 3 h), one recording extracellular

cytokine concentrations, also at three time points (0, 12 h, 24 h),

and one recording total protein concentration. In principle

these arrays could be combined to bundle data together, but the

resulting single array would be sparsely populated. In addition,

bundling data into a single array is not the same as fusing

different types of data. The fusion of flow cytometry, Western

blot and live-cell imaging data (J.A. et al., unpublished data) is

facilitated by DataRail but also requires biological insight and

problem-specific modeling.

2.5 Adding transformed arrays to compendia

Once primary data is imported into a new compendium, it

is then transformed by one or more algorithms internal

to DataRail, by user-specified algorithms, or by external

programs, to create a new transformed data array.

Transformations can change numerical values within an array

or can expand or collapse the dimensionality of arrays. A long

time series, for example, can be transformed into a shorter

series involving selected times, time-averaged data or integrated

values. When a transformation is performed on an array, the

code used for the transformation and the values of free

parameters are stored, along with a reference to the input data

(in the current implementation, the algorithms themselves

are recorded as the text of MATLAB functions), so that the

compendium is a self-documenting entity, in which the

provenance of data can be tracked.
Overall, DataRail can perform a diversity of transformations

falling into several general categories. Simple arithmetic

operations include subtracting background from primary

data, or dividing one type of data by another (see

Supplementary Fig. S2). For example, Bio-Plex-based measures

of protein phosphorylation in CSR Liver data were divided by

total protein concentration to correct for differences in cell

number and extraction efficiency. In a second type of

transformation, metrics such as ‘area under the curve’, maximal

value of a variable in a series, standard deviation of a series and

relative values are computed. Third, complex data transforma-

tions are performed, including mean-centering and variance-

scaling, both of which are helpful in performing principal

component analysis (PCA) or assembling models using PLSR

(Gaudet et al., 2005). Finally, computations specific to

particular modeling methods are performed, including trans-

formation of continuous variables into discrete values for the

purpose of Boolean or discrete data modeling. For example, to

support Boolean modeling, a discretization routine assigns a

value of ‘1’ to a variable if and only if (i) it is above a typical

background value for the assay, as determined by the user or

extracted automatically from primary data, (ii) it is above a

user-supplied threshold and (iii) it is high with respect to the

values of the same signal under other conditions in the data set.

2.6 Data mining and visualization

Visualization can involve data export directly to an external

application such as Spotfire, or it can be performed within the

pipeline. Internal visualization routines that make use of

transformations performed by DataRail are often an effective

means to create thumbnails of time-courses, heat maps, etc.

For example, the data viewer in Figure 4 was developed to

display time courses of protein modification in the CSR Liver

compendium, corrected for background and protein concentra-

tion and scaled to a common vertical axis. Data from primary

hepatocytes and HepG2 cells was compared, and the difference

between the integrated activities in the two lines then computed

and displayed in the background as a red-blue heat map.

Discretization was then used to score responses as transient,

sustained or invariant, each of which was assigned a different

color. Finally, a heat map of the phenotypic responses was

generated to facilitate comparison of signals and outcomes

(see Fig. 4). Importantly, efficient generation of plots such as

this relies on the inclusion in DataRail of multiple data

transformation routines.

2.7 Constructing and evaluating models

DataRail supports three approaches to modeling. First, several

routines that create statistical models, such as PLSR, have

been integrated directly into the code. Second, efficient links

have been created to other MATLAB toolboxes such as

CellNetAnalyzer (Klamt et al., 2007), which performs Boolean

modeling, and the differential-equation-based modeling pack-

age PottersWheel (http://www.PottersWheel.de/). Third, export

of primary or transformed data from DataRail as vectors,

matrices or n-dimensional arrays has been implemented to

facilitate links to other modeling tools. In this case, users need

to ensure continuing compliance with the MIDAS data

standard so as to preserve the integrity of metadata. Thus far

we have implemented export into a MIDAS file, which can be

read by Spotfire, and formats compatible with either

PottersWheel or CellNetAnalyzer.

It is well recognized that modeling in biology is an iterative

process in which modeling, hypotheses generation and experi-

ments alternate. Less obvious is that the relationship between

models and data can be very complex. We have previously

shown that the quality of statistical models can be improved by

various pre-processing algorithms that mean-center data or

scale it to unit variance (Gaudet et al., 2005). Moreover, metrics

derived from time course data such as area under the curve,

maximum slope and mean value can be more informative than

primary data because they implicitly account for time in

different ways. However, it is rarely known a priori which data

transformations will yield the best model. Instead, multiple

models must be computed and the choice among them made

using an objective function such as least squares fit to

experimental data. From the point of view of workflow, the

key point is that a single primary data array can give rise to

multiple transformed arrays, and each of these to multiple

models that differ in their underlying assumptions. As a

consequence, a very large number of models are generated,

each of which needs to be referenced correctly to underlying

J.Saez-Rodriguez et al.
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data and data processing algorithms. DataRail excels at

maintaining these links between model and data.
For example, data in the Liver CSR Compendium were

processed to account for variation in experimental protocol.

PCA was then used to reduce the dimensionality of the cytokine

data, and k-means clustering applied to identify relevant

cytokine subsets. PLSR was then performed, taking as an

input phosphorylation data (signals) and as an output a

PCA-derived cluster of important mediators of the inflamma-

tory response, namely the pro-inflammatory cytokine IL1�

and several activators of granulocytes (MIP1�/CCL3,
MIP1�/CCL4, RANTES/CCL5, GCSF). We could have

chosen a different response set, but this cluster served to

demonstrate key steps in statistical modeling by PLSR. Next,

24 transformed data arrays were created for signals and

responses based on different scaling (mean-centering or

variance-scaling) or metrics (area under the curve, slope, and

mean activation; see Fig. 5). PLSR was performed on pairs of

signal-response arrays, generating 576 models that were then

ranked by goodness of fit to data (a least squares fit based on

R2, see Supplementary Table S3). To prevent overfitting, the

number of components for each model was determined using

7-fold cross-validation (Wold et al., 2004). Importantly, the

whole process of creating and evaluating models ran in

DataRail in a matter of minutes, and every model could be

traced back to the transformed data from which it was derived.

A variety of input arrays gave rise to top scoring models, but

area under the curve was clearly the best measure of output

(Supplementary Table S4). Models based on unit variance

scaling of input data and area under the curve, which

constituted the best form for the input in an earlier PLSR

study (Gaudet et al., 2005), scored no better than 218 out of the

576 models and had R2 values 4-fold worse than the best model.

Had we simply assumed our previous findings to be universally

applicable, we would have generated models with very poor

performance. When the best performing model (whose scores

and loading plots can be found in Fig. S3) was examined by

variable importance of projection (VIP; Gaudet et al., 2005) to

see which signals were most predictive of cytokine secretion, the

levels of phosphorylation of Hsp27 and cJun (each at 0, 30min

and 3 h) comprised 6 of the 10 highest scoring variables.

Phospho-Hsp27 is an integrated measure of p38 kinase activity

and cJun of JNK kinase activity; intriguingly, the levels of

activating phosphorylation on p38 and JNK kinases were

considerably less informative. Thus, the steady-state activities

of p38 and JNK (captured by t¼ 0 data) appear to play a key

role in determining the extracellular concentrations of five

cytokines and growth factors involved in epithelia-immune cell

interactions. Consistent with this idea, it has previously been

described that RANTES secretion is positively regulated by p38

MAPK and JNK in intestinal and airway epithelial cells

(Pazdrak et al., 2002; Yan et al., 2006), as it is in liver.

Fig. 4. Visualizing data in DataRail by exploiting data in transformed arrays. (A) Structure of the compendium used to generate this plot and the

relationship of each feature to data in a transformed array. This structural map was generated using routines internal to DataRail. (B) Time courses

for the phosphorylation of 17 key proteins (rows) in primary hepatocytes under 11 different conditions of cytokine stimulation (columns) and treated

with seven different small molecule drugs (subpanels within each cytokine-signal block). Curves are colored according to their dynamics

(green¼ sustained, yellow¼ transient, magenta¼ late activation, grey¼no significant signal). The intensity of the signal determines the intensity of

the color. The corresponding signals from HepG2 tumor cells are plotted behind without color coding. The background is blue if the mean signal is

stronger for primary cells and red if it is stronger for HepG2 cells; larger differences lead to stronger coloring. In addition, the levels of IL8 at 24 h,

a measure of cellular response, are added as a heat map.
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2.8 Facilitating data sharing and publication

The fact that DataRail packages primary and transformed data

arrays and their provenance together makes it a good means to

share data among laboratories. However, knowledge transfer

would be greatly facilitated by including figures, particularly

those destined for publication or public presentation, within

DataRail in a manner that maintained the analysis itself,

the provenance of the data, and the identities of all algorithms

and free parameters. Users could then interact with

published figures in a dynamic fashion that would go far

beyond what is available in today’s journals, while also

discovering new ways in which the data could be viewed or

put to use. We have implemented a special category of project

whose UID can contain a Pubmed ID and in which figures are

saved as structured variables, ‘pseudo-arrays’, that are

embedded in compendia in the same manner as other arrays.

We are currently working on an additional feature in which all

of the relevant data in a linked SBWiki are stored as a wiki-

book (e.g. a PDF file), thereby ensuring a complete description

of all experimental procedures, reagents, etc. In the case of
open-source publication, the actual manuscript could also be
embedded; otherwise, a link would be provided to the

publisher.

3 DISCUSSION

We describe the implementation of DataRail, a flexible toolbox
for storing and manipulating experimental data for the purpose
of numerical modeling. Metadata in DataRail is based on a

‘minimum information’ MIDAS standard closely related to
standards that have already proven their utility in the analysis

of DNA microarray and other types of high-throughput data.
Because MIDAS is a simplified version of the MIACA
standard, export from DataRail into a MIACA-compliant file

is straightforward. Based on several use cases with up to
1.5� 106 data points (see Table S1), DataRail appears to be
scalable and broadly useful, thanks to its efficient reuse of

primary data and data processing algorithms. Compared to
traditional relational databases, DataRail is significantly easier
to deploy and modify, and it can accommodate a wider range of

data formats since its internal arrays can have any dimension-
ality. Careful management of arrays via semantically typed
identifiers (which also serve as URLs), use of a strict contain-

ment hierarchy, and imposition of metadata standard take the
place of the rigid tabular structure found in relational

databases. However, in cases in which data formats stabilize,
or greater transactional capacity is desired, all or part of a
DataRail data model can be implemented in an RDBMS.

The current DataRail implementation meets our original
design goals in the following ways: (i) data provenance is
maintained through the containment hierarchy, the record of

processing steps, and the assignment of UIDs; (ii) visualization
and modeling are possible with internal tools specialized to PCA
and PLSR; (iii) interaction with external software such as

CellNetAnalyzer, PottersWheel and Spotfire is implemented,
and export routines are available to expand this list;
(iv) flexibility is provided by the use of data arrays with user-

determined dimensionality and a simple interface for adding
new analysis routines; (v) data sharing and publication are
facilitated by a special category of project that packages

together transformed arrays and figures describing key
analyses, including those in published papers. Future develop-
ments in DataRail include the creation of utilities for managing

image and mass spectrometry data, importers for a range of
common laboratory instruments, and support for the HDF5

file format (http://hdf.ncsa.uiuc.edu/HDF5/). HDF is a widely
supported, open-source format used in many fields dealing with
large data sets, such as earth imaging or astronomy. HDF files

are self-describing and permit access to binary data in manner
that is much more efficient that with XML rules. Moreover,
integration of DataRail with Gaggle and similar interoper-

ability standards is a high priority (Shannon et al., 2006).
Gaggle coordinates multiple analysis tools, among them the
R/Bioconductor statistical environment (Gentleman et al.,

2004), thereby providing access to tools for the statistical
analysis of high-throughput data. Finally, versions of DataRail
based on the open-source languages R or Python are in

development, as are discussions with instrument vendors to

Fig. 5. PLSR analysis in DataRail. Liver CSR data was imported to

DataRail and values for protein phosphorylation designated as inputs

and levels of secreted cytokine as outputs. The data was not normalized

with respect to total protein concentration, to not introduce additional

experimental error. The extent of cytokine co-expression was deter-

mined using internal PCA and k-means clustering routines. This yielded

as set of five tightly clustered cytokines that were used as outputs

for modeling (see row 1 of Table S1 for information about the

dimensionality of the data). Primary data and data scaled with respect

to maximum signal were then analyzed to compute area under the

curve, slope, and mean change; this generated 8 transformed arrays for

both input and output data. The resulting arrays were rescaled using

routines for mean-centering, variance-scaling, or both combined (auto-

scaling). The resulting 24 input cubes and 24 output cubes gave rise to

576 PLSR models, which were ranked according to their goodness of

fit. For the best model, the variable importance of projection (VIP) is

shown as a way to assess the relative importance of different inputs for

cytokine secretion.
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create direct export routines for MIDAS-compatible files.
In the context of commercial use, we are discussing, with a
commercial partner, the implementation of granular access
control functionality.

A model-centric approach explicitly encodes specific hypoth-
eses about data and its meaning, and can therefore merge data
not only at the level of information but at the more useful level

of knowledge. Even in the database dependent world of
business, knowledge is usually derived from information in
specialized databases (data warehouses, which are static

representations of transactional databases processed to ensure
data consistency) using business intelligence tools. Business
intelligence is, in essence, an approach to modeling business

and financial processes mathematically and then testing the
models on data. In the case of biological models, data plays an
even more central role because many model parameters can be
estimated only by induction from experimental observations.

Thus, for mathematical models of biology to realize their full
potential, a tight link between model and experiment is
necessary. This involves not only an effective means to calibrate

models, but also reliable information on data provenance. Only
then can model-based predictions be evaluated in light of
assumptions and uncertainties. DataRail therefore represents a

step forward in the complex task of designing software that
supports model-driven knowledge creation in biomedicine.
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