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SUMMARY

Signaling networks respond to diverse stimuli, but
how the state of the signaling network is relayed to
downstream cellular responses is unclear. We mod-
eled how incremental activation of signaling mole-
cules is transmitted to control apoptosis as a function
of signal strength and dynamic range. A linear rela-
tionship between signal input and response output,
with the dynamic range of signaling molecules
uniformly distributed across activation states, most
accurately predicted cellular responses. When nonli-
nearized signals with compressed dynamic range
relay network activation to apoptosis, we observe
catastrophic, stimulus-specific prediction failures.
We develop a general computational technique,
‘‘model-breakpoint analysis,’’ to analyze the mecha-
nism of these failures, identifying new time- and stim-
ulus-specific roles for Akt, ERK, and MK2 kinase activ-
ity in apoptosis, which were experimentally verified.
Dynamic range is rarely measured in signal-transduc-
tion studies, but our experiments using model-break-
point analysis suggest it may be a greater determinant
of cell fate than measured signal strength.

INTRODUCTION

Changes in cell behavior are determined by an interconnected

set of proteins that actively transmit signaling information as

a network (Irish et al., 2004; Jordan et al., 2000; Pawson, 2004).

Modifications of the posttranslational state, enzymatic activity,

or total level of key proteins can act as ‘‘molecular signals’’

that are relayed and interpreted to control cell function. The chal-

lenge of identifying which observed molecular signals determine

a cell response is complicated because many signaling proteins

appear to send mixed or opposing messages. For example, the

transcription factor nuclear factor-kB (NF-kB) is widely regarded

as a prosurvival protein because nuclear relocalization and DNA
binding upregulate expression of apoptosis inhibitors such as

c-IAP2, Bcl-xL, and c-FLIP (Karin and Lin, 2002). In response

to DNA-damaging agents, however, nuclear NF-kB can promote

cell death by recruiting histone deacetylases that silence antia-

poptotic genes (Campbell et al., 2004). Molecular signals can

not only change their phenotypic meaning but also the relative

importance of their message. Tumor cells, for instance, become

addicted to chronically activated mitogenic pathways that are

used only transiently in normal cells (Weinstein, 2002). Tools

that could predict or explain such context-specific roles of mo-

lecular signals would be valuable for designing better-targeted

therapies against disease (Blume-Jensen and Hunter, 2001;

Miller-Jensen et al., 2007).

Many data-driven approaches exist for grouping, separating,

or predicting outcomes on the basis of complex quantitative pat-

terns of signaling or gene expression (D’Haeseleer, 2005; Janes

and Yaffe, 2006; Noble, 2006). The problem with all of them is

that they cannot distinguish molecules that are mechanistically

linked to a phenotype from biomarkers that are correlative but

not causative (Sawyers, 2008). This difficulty can be avoided

by creating models from data sets that consist of molecular

signals with recognized but complicated roles in the outcome

that is to be predicted (Janes et al., 2005; Miller-Jensen et al.,

2007). The drawback is that one’s interpretation of such a model

is biased toward the recognized roles of the molecular signals

and away from more-surprising correlations with phenotype

that could indicate new mechanisms. Data-driven models often

identify hundreds of correlations in large data sets, making it

impractical to perturb each one experimentally. Thus, an addi-

tional means for filtering correlation-based hypotheses is greatly

needed.

Here, we develop a general approach, called ‘‘model-break-

point analysis,’’ which involves globally perturbing the measure-

ments used to build a data-driven model and then quantifying the

loss of model accuracy. We altered signaling-network measure-

ments by manipulating each molecular signal’s ‘‘dynamic range,’’

defined as the responsiveness of cell outcomes to incremental

changes in signal activation. Dynamic range has been under-

studied, because signaling networks are typically measured in ei-

ther their basal (minimum) or hyperstimulated (maximum) states
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Figure 1. The TNF-EGF-Insulin Apoptotic-Signaling Network

(A) Classic overview of the TNF-EGF-insulin network. Mechanistically connected activating signals are represented by arrows, and inhibitory signals are shown by

barred lines. Nodes corresponding to proteins whose activities we directly measured are shown as red ovals.

(B) Systems overview of the TNF-EGF-insulin apoptotic-signaling network. Dashed lines indicate the autocrine cascade activated by TNF (Janes et al., 2006). The

two perturbations of the TGF-a and IL-1a autocrine feedback circuits (by C225 and IL-1ra, respectively) are highlighted in red. Intracellular signals (rectangles) are

divided into groups (purple, orange, blue, green) on the basis of linked statistical dependencies identified by a data-driven model. A stress-apoptosis group

(orange) and a cell-survival group (green) contribute heavily to two molecular basis axes, defined by the first two principal components of the model, which

together accurately predict apoptosis induced by TNF, EGF, and insulin (Janes et al., 2005). A subset of time-dependent signals from these groups, indicated

by yellow dots, form the largest contributors to the molecular basis axes of the network.
(Irish et al., 2004; Janes et al., 2004; Natarajan et al., 2006; Wolf-

Yadlin et al., 2006). This is despite the fact that intermediate

network states, induced by subsaturating stimuli, are more likely

to be experienced physiologically.

Using two independent data-driven models (Janes et al., 2005;

Kumar et al., 2007), we found, surprisingly, that perturbing dy-

namic range did not cause progressive declines in model accu-

racy. Rather, model predictions remained highly accurate until

reaching a defined ‘‘breakpoint,’’ where they failed catastrophi-

cally. Only a few molecular signals and stimuli turn out to be

responsible for failed predictions at the breakpoint. This allowed

us to reveal new, context-specific roles for molecular signals

that were not prominent in the original models but were confirmed

to be critical regulators nonetheless. In addition, our analysis sug-

gested that a linear and uniform dynamic range of molecular sig-

nals is a generally important requirement for the control of cell phe-

notypes, which we directly demonstrate for the stress kinase MK2

on the basis of a data-driven model of cytokine-induced cell death

(Janes et al., 2005). We show that stimulus-dependent MK2 cata-

lytic activity appears to have been optimized for dynamic range

rather than signal strength to maximize the apoptotic response

of cells to a diverse range of cytokines. Contrary to conventional

thinking,we thereforeconclude that the dynamic range overwhich

signaling occurs isa greater determinant of cellularoutcomes than

either thebasalormaximally induciblesignalstrength.Asageneral

approach, model-breakpoint analysis is useful for extracting new

biological mechanisms from large data sets and for identifying

general principles about how signal-transduction networks trans-

mit information to mediate downstream responses.
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RESULTS

We started to explore how specific molecular signals control

phenotypic outcomes by using a data-driven model of cyto-

kine-induced apoptosis (Janes et al., 2005). This model is based

on a data set of 7980 measurements of molecular signals that are

dynamically activated by combinations of tumor necrosis factor

(TNF), which is a death stimulus, together with either epidermal

growth factor (EGF) or insulin, which are survival stimuli (Janes

et al., 2006) (see the Supplemental Data available online). Most

proteins whose activities and levels were measured were caus-

ally implicated in cytokine signaling or apoptosis (Figure 1A), but

how collective information from these pathways determines

a cell’s decision to die or survive was unclear.

After measuring the extent of cell death experimentally, we

examined how the measured molecular signals could function

together to control apoptosis by using partial least-squares

regression (Janes and Yaffe, 2006). This method combines

a large number of experimentally measured signaling events

(‘‘variables’’ composed of time-derived signaling metrics; see

the Supplemental Data) into a smaller number of super-variables

called principal components that are trained to predict cell-death

outcomes. The resulting data-driven model accurately captures

the apoptotic responses induced by various TNF-EGF-insulin

combinations (Janes et al., 2005), as measured by a ‘‘fitness

function’’ that quantifies the predictive ability of the model

(Gaudet et al., 2005) (see the Supplemental Data).

The model also led us to recognize two previously unknown au-

tocrine feedback loops involving transforming growth factor a



Figure 2. Selective Failure of Nonlinear Models Linking Signal

Activation to Signal Output for Predicting Apoptosis

(A) The saturation model with k = 2, 0.8, and 0.2 compared to the original linear

model (Linear response, gray line). Signal output was amplified at low levels of

signal activation and saturated at moderate to high levels of signal activation.

For all k values, the minimum (Min) and maximum (Max) observed values for

each signaling metric were preserved.

(B) Predictions of apoptosis after perturbation of the TGF-a autocrine feed-

back circuit with C225, or the IL-1a feedback loop with IL-1ra, in models

with increasing saturation compared to the original linear model. The accuracy

of predictions was quantified by model ‘‘fitness,’’ where a value of 1 is a perfect

match between predicted and measured values. A specific data point boxed in

yellow is further expanded in (C) as an example. The model breakpoint is

indicated where catastrophic failure of the C225 prediction occurs.

(C) An example of good model fitness. Measured and predicted apoptosis are

shown for the 12 apoptotic readouts corresponding to the TNF+IL-1ra condi-

tion and a saturated model with k = 0.3, highlighted in (B). Perfect model fitness

(= 1) is shown in green as a reference.

(D) The desensitization model with k = 2, 0.8, and 0.2 compared to the original

linear model (Linear response, gray line). Signal output was attenuated relative

to true measured signal activation, particularly at low-to-moderate levels of

activation. For all k values, the minimum (Min) and maximum (Max) observed

values for each signaling metric were preserved.

(E) Predictions of apoptosis after perturbation of the TGF-a autocrine feedback

loop with C225, or the IL-1a feedback loop with IL-1ra, in models with increas-

ing desensitization compared to the original linear model. Model fitnesses

quantifying the agreement between prediction and experiment were calcu-
(TGF-a) and interleukin-1a (IL-1a) (Janes et al., 2006). Secretion of

both of these cytokines was induced by TNF, and their autocrine

stimulation played key roles in modulating the subsequent apopto-

tic response (Figure 1B). Importantly, the model accurately pre-

dicted the profound effects on TNF-induced signaling and apopto-

sis that resulted from blocking TGF-a (with the anti-receptor

antibodyC225)or IL-1a (with the receptorantagonist IL-1ra) (Janes

et al., 2005), despite the fact that neither of these autocrine factors

is explicitly specified in the data set. Thus, the accurate predictions

of cell death after autocrine blockade are a stringent and indepen-

dent validation of the model’s general predictive ability.

Perturbing Dynamic Range Reveals Context-Specific
Model Breakpoints
To examine how signaling activity influenced cell death, we ma-

nipulated the dynamic range of the measured signals computa-

tionally. We used mathematical functions that, when multiplied

by the original data set, maintained the minimum and maximum

experimentally determined values of signaling activity but

dampened or amplified the intermediate values hyperbolically

on the basis of a single nonlinearity parameter (Figures 2A

and 2D; see the Experimental Procedures). As the nonlinearity

parameter (k) decreases, the effective dynamic range of each

signaling molecule becomes compressed. We first investigated

models where the signal output increased rapidly at low signal-

ing and saturated at high signaling (Figure 2A). Saturation could

occur biologically if, for example, the availability of a down-

stream effector were to become limiting when signal activation

is high. As the nonlinearity parameter k was progressively

decreased, the models showed a small gradual decline in their

ability to predict apoptosis after TGF-a blockade with C225,

followed by an abrupt drop in model performance when k = 0.8

(Figure 2B). Notably, predictive accuracy did not simply erode

away with increasing saturation. Instead, the models tolerated

some degree of saturation before reaching a catastrophic

‘‘breakpoint,’’ where the accuracy fell dramatically. Surpris-

ingly, this failure was specific to disruption of the TGF-a auto-

crine circuit; predictions of apoptosis induced by TNF with or

without IL-1a blockade were unaffected (Figures 2B and 2C,

Figure S1A, and data not shown; see the Supplemental Data).

This suggested that perturbing dynamic range causes nonglo-

bal failures within a data-driven model that are treatment

specific and thus context specific.

lated as in (B). A specific data point boxed in yellow is further expanded in

(F) as an example. The model breakpoint is indicated where catastrophic

failure of the IL-1ra prediction occurs.

(F) An example of no prediction (n.p.). Measured and predicted apoptosis

are shown for the 12 apoptotic readouts corresponding to the TNF+IL-1ra con-

dition and a desensitized model with k = 0.2, highlighted in (E). Perfect model

fitness (= 1) is shown in green as a reference.

For (B) and (E), model fitness is shown as the R2 value ± 90% Fisher Z-trans-

formed confidence intervals for the regression model: Measured apoptosis =

Predicted apoptosis (see the Experimental Procedures). For (C) and (F) data

are shown as the central prediction ± crossvalidated standard error (SE) along

the x axis and the mean ± standard error of the mean (SEM) of triplicate biolog-

ical measurements along the y axis. Apoptosis data are from four readouts

measured by flow cytometry at three time points (Janes et al., 2005).
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We next looked at desensitization. A reaction pathway could

appear to be desensitized if, for example, multimerization of

the activator were required for signal transmission to down-

stream effectors. A desensitization function was defined that

warped the activation-output relationship similarly to the satura-

tion function but in the opposite direction (Figure 2D; see the Ex-

perimental Procedures). Models with increasing desensitization

again showed drastically different accuracies in predicting the

apoptotic response (Figure 2E). Here, the TGF-a perturbation

and training-data predictions were completely accurate across

all desensitization values, but now the quality of the apoptosis

predictions after IL-1ra blockade dropped precipitously when

k was below 0.8 (Figures 2E and 2F, Figure S1B, and data not

shown). Once again, the models reached a sudden ‘‘breakpoint’’

where small changes in dynamic range caused a complete loss

of predictive accuracy, suggesting that the models could

accommodate a finite amount of desensitization in the molecular

signals before failing. Therefore, saturation and desensitization

complement one another in their ability to reveal context-specific

breakpoints in data-driven models (see the Supplemental Data).

Similar model breakpoints were observed with other types of

data transformations (Figure S2) as well as with nonbiological

data sets (Figure S3), indicating that context-specific model

breakpoints are a general property of data-driven models.

Model-Breakpoint Analysis Identifies a TGF-a-Specific
Role for Early PI3K-Akt Pathway in TNF-Induced
Apoptosis
We sought to determine exactly which measurements in the data

set caused the TGF-a blockade predictions to fail during satura-

tion and the IL-1a blockade predictions to fail during desensitiza-

tion. We reasoned that this ‘‘model-breakpoint analysis’’ could

provide context-specific insight into the function of signaling

networks. Our first application of model-breakpoint analysis re-

vealed a time- and treatment-specific role for the survival kinase

Akt (see below).

We started by examining the structure of the failed saturation

model when it had passed just beyond the breakpoint for accu-

rately predicting the TGF-a perturbation (k = 0.8). The starting

model required three principal components for optimal accuracy

(Figure 3A). Saturating the model did not affect the number of

components until the breakpoint was reached, when suddenly

the third principal component was no longer statistically informa-

tive (Figure 3B and data not shown). If the failed saturation model

was forced to contain three principal components, the resulting

model now accurately predicted the TGF-a perturbation (Fig-

ure 3C). Conversely, when the third principal component was

removed from the original model, prediction accuracy for

TGF-a blockade decreased substantially. Together, the model

results indicated that the third principal component was critical

for quantitatively accurate predictions when autocrine TGF-a sig-

naling was blocked with C225.

The importance of the third principal component was surpris-

ing because it provided only a small improvement in overall

predictive power toward the training set in which no TGF-a block-

ade was performed (Figure 3A). Nevertheless, the sensitivity of

the apoptosis predictions to inclusion of the third principal com-

ponent suggested that some subtle-yet-critical information was
346 Cell 135, 343–354, October 17, 2008 ª2008 Elsevier Inc.
being encoded, prompting us to look at its role in greater detail.

When the third principal component was included, and the pre-

dictive accuracy of the saturation model was restored, we found

that early measurements of Akt phosphorylation became more

heavily weighted (Figure 3D). Therefore, model-breakpoint

analysis of the saturation model led us to predict that early Akt

signaling might be a critical signal for TNF-induced apoptosis

when the TGF-a autocrine circuit is disrupted.

To test the context-specific role of early PI3K-Akt signaling, we

performed timed-inhibitor experiments with LY294002, a revers-

ible inhibitor of PI3K (Figures 3E and 3F). After TNF stimulation of

C225-inhibited HT-29 cells, we observed strong phosphoryla-

tion of Akt at 15 min, which was blocked with LY294002 as

expected (Figure 3F). In the absence of TGF-a blockade by

C225, there was no change in apoptosis when LY294002 was

present for the first 3–4 hr after TNF stimulation and then re-

moved from the medium (Figure 3E, conditions 1 and 2), confirm-

ing earlier findings that early Akt signaling does not affect apo-

ptosis induced by TNF alone (Janes et al., 2003). Strikingly,

when PI3K-Akt was inhibited at early times in C225-treated cells,

we observed an �2-fold increase in TNF-induced apoptosis

compared to C225-treated cells in the absence of LY294002

(p < 10�4, conditions 3 and 4). These experiments show that

early PI3K-Akt signaling makes an important antiapoptotic

contribution only when cells lack a functional TGF-a autocrine

circuit. Therefore, by deemphasizing early Akt measurements

through loss of a principal component, the breakpoint of the

saturation model had correctly revealed a context-specific role

of early Akt signaling in promoting cell survival.

Model-Breakpoint Analysis Correctly Distinguishes
Essential Signals and a New Mechanism
for TNF-Induced IL-1a Signaling and Apoptosis
Autocrine IL-1a is a potent prodeath stimulus downstream of

TNF (Janes et al., 2006), but the relevant intracellular pathways

upstream of IL-1a release or downstream of the IL-1 receptor

that mediate this response are not known. We therefore per-

formed model-breakpoint analysis on the desensitization model

at the IL-1ra breakpoint (Figure 2E) to identify candidate regula-

tors of IL-1a-mediated apoptosis. In contrast to the saturation

breakpoint involving disruption of the TGF-a autocrine feedback

circuit, we observed no change in the number of principal com-

ponents at the model breakpoint for IL-1ra treatment (data not

shown). This prompted us to search for changes within the

principal components themselves.

Each principal component consists of weighting factors,

called ‘‘loadings,’’ that quantify how much each signaling metric

contributes to that principal component (Janes and Yaffe, 2006;

Martens and Martens, 2001). Signaling metrics with large posi-

tive or negative loading values are very important for the principal

component; conversely, molecular signals with loadings near

zero play a negligible role. At the desensitization breakpoint,

we found that some metrics decreased their weightings and

thus became ‘‘underloaded,’’ whereas others increased their

weightings and became ‘‘overloaded.’’ For prediction of apopto-

sis after autocrine IL-1a perturbation, we found that the under-

loaded metrics were critical for model performance and were

therefore likely to be of high biological importance (Figures



Figure 3. Failure of the Saturation Models Involves Loss of a Principal Component Containing Information from Early Akt Signaling

(A and B) Box-and-whisker plots showing the increase in information captured for the original linear model (A) and the saturation model (B) as the number of

principal components is increased from one principal component to four. The midline indicates the median crossvalidated variance captured across the 12

apoptotic outputs measured, the boxes indicate the 25th and 75th percentiles, and the error bars indicate the 10th and 90th percentiles. Significant increases

in variance captured were assessed by a one-sided sign-rank test. Principal components that were included in the predictive model are shown in black, and

principal components that were omitted are shown in gray.

(C) Changes in model fitness for the C225 prediction as the number of components for the saturation and linear models is changed from two principal components

(gray) to three principal components (black). Model fitness is shown as R2 value ± 90% Fisher Z-transformed confidence intervals for the regression model:

measured apoptosis = predicted apoptosis (see the Experimental Procedures).

(D) Akt signaling makes an important contribution to the third principal component when a two-component saturation model fails to predict apoptosis after TGF-a

blockade. The statistical significance of the overrepresentation of any particular signal in the top 30 metrics after inclusion of the third principal component was

examined by the binomial test (after correcting for multiple-hypothesis testing, a significance level [‘‘Cutoff’’] below 0.005 was required). Molecular signals are

considered overrepresented when significantly more metrics are observed in a list than would be expected by chance. See Table S1 for a complete list of

molecular signals that contribute to the third principal component.

(E) Early inhibition of Akt phosphorylation affects TNF-induced apoptosis only in the context of TGF-a blockade by C225. HT-29 cells were pretreated for 1 hr with

10 mg/ml C225 in the presence or absence of 20 mM LY294002 where indicated and then stimulated with 5 ng/ml TNF for 24 hr. At 3 hr after TNF stimulation,

LY294002 was washed out by replacement of the medium with conditioned medium from TNF+C225-treated cells. Apoptosis was measured by cleaved cas-

pase-3 staining and flow cytometry (Janes et al., 2005). Data are shown as the mean ± SEM of triplicate biological measurements. The baseline apoptosis induced

by mock stimulation ± SEM (gray line) is indicated.

(F) Early TNF+C225-induced Akt phosphorylation is inhibited by LY294002. HT-29 cells were pretreated for 1 hr with 10 mg/ml C225 in the presence or absence of

20 mM LY294002 where indicated. Cells were then stimulated with 5 ng/ml TNF, and Akt phosphorylation (P-Akt) was measured 15 min later by western blotting

with b-actin as a loading control.
S4A and S4B, see below). In contrast, overloaded metrics were

uninformative and thus possibly dispensable for apoptosis

induced by IL-1a and TNF (Figures S4C and S4D).

Among the top 30 overloaded metrics in the failed desensitiza-

tion model, we found that ERK activity was significantly overrep-

resented (Figures 4A and 4B). The ERK pathway is widely

regarded as prosurvival (Ballif and Blenis, 2001) (Figure 1A),

but our analysis suggested that ERK signaling played a minimal

role in promoting survival when autocrine IL-1a was blocked with

IL-1ra (Figure 4A). To test the importance of ERK by experiment,

we treated HT-29 cells with TNF+IL-1ra in the presence or ab-

sence of the MEK inhibitor, U0126. Despite complete inhibition

of inducible ERK phosphorylation (Figure 4C), apoptosis medi-

ated by TNF+IL-1ra was unchanged in the presence of U0126
(Figure 4D), indicating that ERK plays a negligible prosurvival

role. Therefore, model-breakpoint analysis had correctly sepa-

rated an ERK-activation epiphenomenon (Figure 4C) from the

signals that actually control apoptosis (Figure 1B).

We next examined the most-underloaded metrics, which were

the direct cause of the desensitization breakpoint (Figure S4A).

When model failure occurred, we found several measurements of

MK2 activity among metrics with the largest reduction in total load-

ings (Figures 5A and 5B). To investigate the potential role of MK2

experimentally, we perturbed MK2 signaling by modestly overex-

pressing a kinase-dead MK2 that acts as a dominant negative

(see Figure 6 below). Compared to cells expressing wild-type

MK2 at similar levels, kinase-dead MK2 showed significantly de-

creased apoptosis in response to TNF (p < 10�6, Figure 5C).
Cell 135, 343–354, October 17, 2008 ª2008 Elsevier Inc. 347



Figure 4. Overloaded Signaling Metrics High-

light Irrelevant Signaling Information from

ERK Activity

(A) ERK activity is significantly overrepresented among

overloaded molecular signals in the desensitization

model at the point of IL-1ra-prediction failure. Statisti-

cal significance of overrepresentation in the top 30

metrics was assessed as described in Figure 3D.

(B) Overloading of ERK activity metrics contributes to

failure of the desensitization model to predict apopto-

sis after IL-1a blockade at the breakpoint (indicated

in Figure 2E). All ERK activity metrics in the top 30 met-

rics with the largest positive change are shown, along

with the top five metrics that are not derived from

ERK activity. Overall rank is shown to the right of the

metric description. Changes in total loadings are

depicted by sparklines (Tufte, 2006) bounded by the

range of the data. The value at which the apoptosis

prediction by IL-1ra first fails is highlighted in red.

(C) TNF+IL-1ra induces ERK phosphorylation, which is

inhibited by U0126. HT-29 cells were pretreated for 1 hr

with 25 mM U0126 where indicated and then stimulated

with 100 ng/ml TNF + 30 mg/ml IL-1ra for 15 min. ERK

phosphorylation (P-ERK) was measured by western

blotting with total ERK levels used as a loading control.

(D) Inhibition of ERK activity by U0126 pretreatment

does not affect TNF+IL-1ra-induced apoptosis.

HT-29 cells were pretreated for 1 hr with 25 mM

U0126 where indicated and then stimulated with

100 ng/ml TNF + 30 mg/ml IL-1ra for 24 hr. Apoptosis was measured by cleaved caspase-3 staining and flow cytometry (Janes et al., 2005). Data are shown as

the mean ± SEM of triplicate biological measurements. The baseline apoptosis induced by mock stimulation ± SEM (gray line) is indicated.
Importantly, the difference in TNF-induced apoptotic responses

between cells expressing kinase-dead versus wild-type MK2 van-

ished when the IL-1a autocrine circuit was blocked by IL-1ra. Sim-

ilar results were obtained with shRNA-mediated knockdown of en-

dogenous MK2 in these cells (Figure 5D and Figure S5). These data

indicate that functional MK2 signaling is quantitatively essential for

normal apoptotic regulation via TNF-induced IL-1a signaling.

Paradoxically, in the original model built on linear data, MK2

signaling contributes to TNF-induced apoptosis at early times,

whereas signaling through the IL-1a feedback loop is not

observed until somewhat later times (Janes et al., 2005, 2006).

These observations raised the possibility that MK2 could be act-

ing as a mediator that links TNF signaling to the IL-1a feedback

loop. Early TNF-induced MK2 activation was unaffected by IL-

1ra blockade (p = 0.2, Figure S6), suggesting that MK2 functions

downstream of TNF but upstream of IL-1a.

TNF induces the transcription of many proinflammatory cyto-

kines, including the IL1A gene, via activation of IKK/NF-kB

(Figure 1A) (Mori and Prager, 1996). TNF also activates the p38-

MK2 pathway, where a major role of MK2 is to stabilize AU-rich

element (ARE)-containing mRNA transcripts that are ordinarily de-

graded rapidly after transcription (Kotlyarov et al., 1999). We noted

that the 30 UTR of IL1A contains two copies of an UUAUUUA(U/A)

(U/A) consensus sequence implicated in destabilizing ARE-con-

taining transcripts (Lagnado et al., 1994). We therefore hypothe-

sized that earlyMK2 signaling couldbeproviding an IL-1a-specific

proapoptotic signal by stabilizing IL1A transcripts and thereby al-

lowing sustained IL-1a protein expression for subsequent release.

To test this prediction, we measured IL1A mRNA levels after

treatment of cells with TNF for 1 hr, a time when MK2 remains
348 Cell 135, 343–354, October 17, 2008 ª2008 Elsevier Inc.
strongly activated but IKK/NF-kB signaling has returned to basal

levels (Janes et al., 2006) (Figure S6). In cells expressing wild-

type MK2, IL1A transcript levels remained high 1 hr after TNF treat-

ment (Figure 5E). In contrast, IL1A levels in cells expressing kinase-

dead MK2 had returned to baseline at 1 hr after TNF treatment.

Thus, the proapoptotic role of early MK2 signaling appears to func-

tion through stabilization of IL1A transcripts, thereby amplifying the

magnitude of the prodeath IL-1a autocrine circuit induced by TNF.

Model-Breakpoint Analysis Applies to Other
Large-Scale Measurements of Signal Transduction
To test its general applicability, we applied model-breakpoint anal-

ysis to a second data set of quantitative phosphoproteomic mea-

surements that had been paired with phenotypic readouts of cell

migration and proliferation in a mammary epithelial cell line (Wolf-

Yadlin et al., 2006). In this study, 62 tyrosine-phosphorylated pep-

tides were quantified at four time points shortly after stimulation of

cells with EGF or the EGF-family ligand, heregulin. A data-driven

model built on this 62-phosphopeptide signature was previously

shown to capture the migratory and proliferative responses of cells

stimulated with EGF or heregulin (Kumar et al., 2007). The starting

model also correctly predicts the EGF- and heregulin-induced re-

sponses of cells engineered to express �20-fold higher levels of

the EGF receptor family member, ErbB2. The treatments involving

ErbB2-overexpressing cells were not included in the initial model

and therefore serve as an independent validation of its accuracy.

We observed a clear breakpoint for predicting the effects

of ErbB2 overexpression when the phosphoproteomic data was

desensitized (Figures S7A and S7B). At this breakpoint (k = 0.2),

there was a significant enrichment in three phosphopeptides,



Figure 5. Failure of the Desensitization Model in the Context of IL-1a Blockade Occurs by Neglecting Critical Information from MK2

(A) MK2 activity is significantly underloaded in the desensitization model at the point of IL-1ra-prediction failure. Statistical significance of molecular signals that

become underloaded in the desensitization model immediately after the breakpoint was assessed as described in Figure 3D.

(B) All MK2 activity metrics in the top 30 metrics with the largest negative change at the point of model failure are shown, along with the top five metrics that are not

derived from MK2 activity. Overall rank is shown to the right of the metric description. Changes in total loadings are depicted by sparklines (Tufte, 2006) bounded

by the range of the data. The value at which the apoptosis prediction by IL-1ra first fails is highlighted in red.

(C and D) MK2 signaling is important for IL-1a-dependent responses to TNF. Changes in TNF- and TNF+IL-1ra-induced apoptosis are shown for HT-29 cells

overexpressing wild-type or kinase-dead MK2 (C). Changes in TNF- and TNF+IL-1ra-induced apoptosis are shown for HT-29 cells stably expressing an shRNA

for MK2 (shMK2) or control hairpin (shLuc) (D). HT-29 cells were stimulated with 100 ng/ml TNF + 30 mg/ml IL-1ra for 24 hr, and apoptosis was measured by

cleaved caspase-3 staining and flow cytometry (Janes et al., 2005). Data are shown as the mean ± SEM of sextuplicate or quadruplicate biological measure-

ments. Note that loss of MK2 signaling decreases apoptosis only when the IL-1a feedback loop is present.

(E) MK2 signaling promotes sustained expression of IL1A. HT-29 cells were stimulated with 100 ng/ml TNF for 1 hr, and IL1A mRNA levels measured by RT-qPCR.

Data are shown as the mean ± SEM of triplicate biological measurements.
which became undervalued in the model’s principal components

(Figure S7C). Two of these phosphopeptides were in the scaffold-

ing protein p130Cas (Y234 and Y249), which is an important medi-

ator of migration downstream of focal adhesion kinase (FAK) (Cary

et al., 1998). The other phosphopeptide lies in the activation loop

of ERK2 (T185Y187), which is widely known to be an important

regulator of the G1/S transition (Torii et al., 2006) and is also in-

volved in migration of epithelial cells (Matsubayashi et al., 2004).

Both ERK and p130Cas have been identified as critical signaling

proteins for mediating ErbB2-induced cell invasion of mammary

adenocarinoma cells (Spencer et al., 2000). Taking these data

together, we conclude that model-breakpoint analysis is a general

tool that can derive unique biological insight from data-driven

models that link signal transduction to cell phenotype.

MK2 Dynamic Range Is More Important for TNF-Induced
Apoptosis Than Absolute Signal Strength
Maximum dynamic range was clearly essential for optimum

model performance, but could dynamic range be similarly impor-
tant for the function of individual signaling pathways within cells?

We focused on MK2 catalytic activity as a prototypical molecular

signal because it had emerged as an important regulator of TNF-

induced apoptosis through autocrine IL-1a (Figure 5). We first

confirmed that MK2 activation was occurring uniformly in the

entire cell population by using flow cytometry to analyze phos-

phorylation of its substrate, Hsp27 (P-Hsp27) (Stokoe et al.,

1992). P-Hsp27 increased proportionally with TNF dose (Fig-

ure 6A), allowing us to use biochemical measurements of

P-Hsp27 as an estimate of MK2 activity in vivo.

The dynamic range of MK2 signaling was experimentally

perturbed by the establishment of stable lines of HT-29 cells

expressing comparably low levels of wild-type, kinase-dead, or

constitutively active MK2 (Figure 6B). Quantitative immunoblot-

ting for P-Hsp27 showed that all cell lines displayed the expected

hyperbolic increases in MK2 activity with TNF dose (Figure 6C

and Figure S8). Compared to the responsiveness of cells overex-

pressing wild-type MK2, however, the kinase-dead and constitu-

tively active mutants showed compressed dynamic range similar
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Figure 6. Prediction and Experiment Indicate that Wild-Type MK2 Signaling Provides an Optimum Dynamic Range for TNF-Induced

Apoptosis

(A) Flow-cytometry profiles of HT-29 cells stimulated with the indicated TNF concentrations for 30 min and stained for P-Hsp27 levels showing a dose-dependent

shift of the entire cell population, indicative of a uniform increase in MK2 activity.

(B) Overexpression of wild-type, kinase-dead, and constitutively active MK2 in HT-29 cells, which represent multiplicative, desensitized, and saturated model

variants. Cells were transduced with retroviral vectors containing the indicated MK2 constructs, and MK2 overexpression was quantified by western blotting

and densitometry compared to vector control cells. b-actin was used as a loading control.

(C) HT-29 cells stably overexpressing wild-type, kinase-dead, and constitutively active MK2 were stimulated with the indicated TNF concentrations for 30 min,

and P-Hsp27 was measured by western blotting. b-actin was used as a loading control.

(D) Densitometry quantifying relative P-Hsp27 levels in the MK2 retrovirally transduced cells after TNF stimulation as a function of P-Hsp27 measured for the same

TNF concentration in wild-type MK2-overexpressing cells. Data are shown as the mean ± SEM of triplicate biological measurements.

(E) Comparison of measured and predicted apoptosis for HT-29 cells overexpressing wild-type MK2. Predictions closely matched experiments at high cytokine

concentrations.

(F) Predicted apoptosis for HT-29 cells overexpressing wild-type, kinase-dead, and constitutively active MK2 at high cytokine concentrations. Wild-type predic-

tions are replotted from (E) for comparison.

(G) Measured apoptosis for HT-29 cells overexpressing wild-type, kinase-dead, and constitutively active MK2 at high cytokine concentrations. Wild-type

measurements are replotted from (E) for comparison.

For (E) and (F), predictions are shown as the central prediction ± range of eight (E) or five (F) crossvalidation runs. For (E) and (G), HT-29 cells were stimulated with

the indicated cytokine combinations for 24 hr, and apoptosis was measured by cleaved casapase-3 staining and flow cytometry (Janes et al., 2005). Data are

shown as the mean ± SEM of triplicate biological measurements. Note that expression of either the kinase-dead or the constitutively active MK2 causes

decreased apoptosis compared to expression of wild-type MK2.
to the desensitization and saturation functions used in model-

breakpoint analysis (Figure 6D, compare with Figures 2A and

2D). Thus, these MK2-overexpressing cells act as in vivo surro-

gates of linear (wild-type), desensitized (kinase dead), and satu-

rated (constitutively active) signaling via the MK2 pathway.

We first assessed whether the model could capture the behav-

ior of cells overexpressing wild-type MK2 at 2.2-fold above

endogenous levels (Figure 6B). The overexpression was explic-

itly incorporated into the original linear model (in which MK2

was not overexpressed) by multiplication of the preexisting cyto-

kine-stimulated MK2 time courses by 2.2. This simple approxi-

mation for proportional MK2 activation accurately captured the

extent of apoptosis observed for all six combinations of high-

dose TNF, EGF, and insulin (Figure 6E, conditions 1–6). We found
350 Cell 135, 343–354, October 17, 2008 ª2008 Elsevier Inc.
that the model could not capture the extent of apoptosis induced

by low-dose concentrations of TNF (conditions 7–9), likely be-

cause of a shift in TNF sensitivity. Specifically, overexpression

of wild-type MK2 caused low-dose TNF treatments to induce

apoptosis similarly to high-dose treatments (compare conditions

2 and 9, 4 and 7, and 6 and 8 in Figure 6E). We therefore exam-

ined the kinase-dead and constitutively active MK2 mutants only

under high-dose TNF conditions, where the model accurately

captured the apoptotic responses.

To model the kinase-dead and constitutively active MK2 mu-

tants, we first quantified the overexpression of each MK2 variant

(Figure 6B) and then applied the saturation and desensitization

functions with k equal to 0.2 (Figures 2A and 2D) to mimic the

activation profile of constitutively active and kinase-dead MK2,



respectively (Figures 6C and 6D). Last, for both MK2 mutants, we

challenged the model to predict how cytokine-induced apopto-

sis would be changed relative to wild-type-MK2 overexpression.

Surprisingly, the model predicted that both kinase-dead and

constitutively active MK2 would decrease TNF-induced apopto-

sis relative to the wild-type (Figure 6F). When apoptosis was

measured experimentally, we found that the two MK2 mutants

were significantly more resistant to TNF-induced apoptosis

than the wild-type (p < 0.05, Figure 6G), exactly as predicted

by the model. Thus, both model and experiment support the

nonintuitive conclusion that catalytic activity does not monoton-

ically predict how MK2 influences cell death stimulated by TNF.

Our application of model-breakpoint analysis to apoptotic

signaling indicates that the network exists in a state of ‘‘optimal

tuning’’ for signal transfer, which is achieved by maximizing the

dynamic range of molecular signals rather than interpreting

absolute signal strength.

DISCUSSION

Here, we describe a new method for quantitative analysis of the

link between signaling events and cellular responses. The tech-

nique starts with a data-driven model based on quantitative

signaling measurements that are used by the model to predict

cellular responses. The signaling data set is progressively nonli-

nearized, and the model is then rebuilt from the nonlinear data

set. Eventually, the nonlinearization reaches a critical breakpoint

where the model abruptly stops predicting cellular responses

accurately. At this breakpoint, the reason for model failure is di-

agnosed by identification of which nonlinearized signals caused

the failed model to be built incorrectly. The biological importance

of these specific signals is then tested by experiment for their

role in controlling the predicted cellular response. Together,

model-breakpoint analysis can identify new mechanisms that

would not have otherwise emerged from the data. Using

model-breakpoint analysis, we further propose here that the

control of cell phenotypes requires maximum dynamic range of

the response-determining pathways within the cell.

The Value of Model-Breakpoint Analysis
Many ‘‘systems-biology’’ initiatives are actively compiling large-

scale signaling measurements, and data-driven modeling is

emerging as the first level of analysis for these data sets (Gaudet

et al., 2005; Janes et al., 2005; Natarajan et al., 2006; Pradervand

et al., 2006). Model breakpoints provide a next level of analysis

by evaluating both the model performance as well as the data

upon which it was based. One practical benefit of the nonlinea-

rizations is that they gauge the sensitivity of the model predic-

tions to experiments that are not quantitative. The saturated

and desensitized relationships used to explore signal transmis-

sion could just as easily be used to simulate nonlinear assay

readouts for the measured molecular signals. Our biochemical

assays were painstakingly validated to be linear, quantitative,

and reproducible (Gaudet et al., 2005; Janes et al., 2003). In ret-

rospect, this optimization was crucial because only minor nonlin-

earities in the data would have been sufficient to cause failed

predictions of one or both of the autocrine perturbations. The

results here explicitly indicate that the success of data-driven
modeling is directly tied to the quality of the large-scale mea-

surements (Janes and Yaffe, 2006). Model-breakpoint analysis

is applicable to any quantifiable set of assays and can be used

to benchmark their accuracy and consistency to help steer

data-collection efforts. As large-scale signaling experiments

are being pursued with increasing frequency (Albeck et al.,

2006), it will be important to determine the extent of quantitative

accuracy needed to analyze these data correctly. Indeed, apply-

ing model-breakpoint analysis to a phosphoproteomic data set

revealed several important phosphopeptides that were not

emphasized in the authors’ preliminary and follow-up analyses

(Kumar et al., 2007; Wolf-Yadlin et al., 2006).

Second, we found that by examining where data manipula-

tions cause sudden breakpoints in model accuracy, we can

uncover unexpected, context-specific biological connections

between individual molecular signals and apoptosis. For exam-

ple, model-breakpoint analysis correctly showed that ERK sig-

naling is not important in the prevention of TNF-induced apopto-

sis when autocrine IL-1a is blocked (Figure 7A), despite the fact

that ERK activity is among the most informative molecular

signals for predicting apoptosis overall (Janes et al., 2005). Con-

versely, early Akt signaling does not normally send an effective

antiapoptotic message when cells are treated with TNF alone

(Janes et al., 2003, 2005), but Akt emerges as a prominent

apoptosis-determining signal when these same cells are treated

with TNF and autocrine TGF-a is blocked (Figure 7B).

Part of the reason why context specificity is so puzzling is that

it is has been challenging to find experimental conditions where

such behavior can be easily revealed (Natarajan et al., 2006).

Model-breakpoint analysis provides a tool for computationally

interrogating context specificity without having to resort to

brute-force screening of ligands and inhibitors. Obviously, the

breakpoints of a data-driven model can only analyze the con-

texts of the stimulus conditions that are being predicted. We

did not, for example, rediscover the context-specific, prodeath

role of the IKK/NF-kB pathway (Campbell et al., 2004), despite

having measured it, because we lacked treatment conditions in

the data set that involved DNA damage. This stresses the impor-

tance of proper experimental design when the goal is to build

data-driven models that help reveal new biological mechanisms.

Dynamic Range in Signaling and Disease
One surprising result from this study was the prediction and ex-

perimental verification that MK2 dynamic range is more critical

for proapoptotic signaling than signal strength (Figures 7C and

7D). Retrospectively, the behavior of the different MK2 variants

could be explained from the perspective of signal transmission.

Unlike the predictions of TGF-a and IL-1a perturbation, which

selectively required low or high levels of signal activation, our

results indicate that the MK2 pathway uses its complete dynamic

range. Overexpression of a dominant-negative MK2 acts as

a buffer for signal transmission, desensitizing the pathway

such that only very strong activation events lead to productive

output from the endogenous MK2. Conversely, a constitutively

activated MK2 that has been stably incorporated provides

a tonic, near-saturating level of signaling, which reduces the

relative responsiveness of the endogenous MK2 to external

stimuli. Only overexpression of the wild-type kinase, which
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Figure 7. Context-Specific and Network-Level Mechanisms Revealed by Model-Breakpoint Analysis

(A) MEK-ERK signaling is not involved in TNF-induced apoptosis.

(B) Early Akt activity sends a prosurvival signal when TNF-induced TGF-a autocrine signaling is blocked. An unknown activator of early Akt (‘‘?’’) must be critical

for the prosurvival function.

(C) Wild-type MK2 signaling promotes TNF-induced apoptosis by stabilizing the autocrine IL-1a circuit.

(D) The dynamic range of MK2 is more predictive of its apoptotic contribution than MK2 signal strength. Upper left: Apoptosis induced by 5 ng/ml TNF is plotted

against MK2 signal strength as measured by P-Hsp27 in Figure 6C. Apoptosis increases then decreases with signal strength (green curve). Lower right: Apoptosis

induced by 5 ng/ml TNF is plotted against MK2 dynamic range as defined by the range of signal strengths where the slope of activation compared to wild-type

MK2 is greater than or equal to 1 in Figure 6D. Apoptosis appears to increase proportionally with dynamic range (green curve). Disease mutations (red) may cause

perturbations in dynamic range that fall between the wild-type and the hyperactive-hypoactive alleles. Data are shown as the mean ± SEM of triplicate biological

measurements.
both augments signal strength and maintains appropriate con-

trol of catalytic activity, maximizes the proapoptotic contribution

of MK2 to TNF-induced signaling (Figure 7D and Figure S9).

Recent work has indicated that the fold change in activity of

a signaling molecule (relative to its basal activity) is a greater de-

terminant of cell-fate control than the absolute level of signaling

(Miller-Jensen et al., 2006; Sasagawa et al., 2005). Because fold

changes in activation are a direct reflection of the dynamic range

in which phenotypic information is communicated, these data

independently support our conclusions. Indeed, the reduction

of effective dynamic range is our main explanation for the de-

crease in cytokine-induced apoptosis that we observed when

cells express constitutively active MK2, a kinase whose function

is mainly proapoptotic (Kotlyarov et al., 1999).

To test the predicted effect of nonlinear MK2 signaling, we

chose to stably overexpress constitutively active or kinase-

dead MK2 mutants and compare their behavior to that of wild-
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type MK2. We have found that such mutation-based approaches

are more effective at nonlinearizing signal activation-output

relationships than other techniques. RNA interference (RNAi) or

wild-type overexpression, for instance, reduce or increase the in-

duced level of signaling but do not affect the general linearity of

dynamic range as a function of these levels (Figure S9). Discrep-

ancies between RNAi- and dominant-negative-based perturba-

tions of a signaling pathway have not been openly documented.

However, we predict that differences should arise occasionally

because these approaches affect dynamic range differently.

For example, in our work, the small but significant increase in

TNF+IL-1ra-induced apoptosis in cells overexpressing kinase-

dead MK2 (Figure 5C) was not observed when MK2 levels were

downregulated with an RNA hairpin (Figure 5D). An important

function of MK2 is to stabilize AU-rich transcripts (Winzen et al.,

1999), suggesting that dynamic range may be particularly impor-

tant at the interface between signaling and gene expression.



Although complete gain- and loss-of-function mutations cause

dramatic changes in signaling responsiveness, more subtle

amino-acid changes (single-nucleotide polymorphisms, disease

mutations, etc.) could alter dynamic range with pathophysiolog-

ical consequences (Figure 7D). Our finding that cellular outcomes

are highly sensitive to dynamic range suggests that mutant pro-

teins should be characterized under conditions that capture

a breadth of activation states. This is perhaps best achieved by

induction of the network with diverse stimuli in a dose-dependent

and combinatorial manner (Figure 6).

In general, computational models are most valuable when they

provide new biological insight that can then be verified experi-

mentally. Model-breakpoint analysis is a new method for hypoth-

esis generation using prevalidated models. Model breakpoints

are not mere computational anomalies but instead highlight

previously unexplored aspects of a data-driven model that are

biologically relevant. Just as it is no longer possible to compre-

hend signal-transduction networks by intuition alone (Jordan

et al., 2000), we believe that models of networks cannot be fully

grasped by mere inspection of their parameters or their predic-

tions. Our study using model-breakpoint analysis suggests that

dynamic range may be a particularly important criterion for the

evolution of complex signaling networks.

EXPERIMENTAL PROCEDURES

See the Supplemental Data for a detailed description of standard experimental

procedures and reagents.

Data-Driven Modeling

The signal-response data sets and partial least-squares models of cytokine-

induced apoptosis and EGF-heregulin-induced migration-proliferation have

been described elsewhere (Janes et al., 2005; Janes et al., 2006; Kumar

et al., 2007; Wolf-Yadlin et al., 2006). Additional details are available in the

Supplemental Data.

Partial Least-Squares Modeling and Model Fitness

Application of partial least-squares to biological data has been described in

detail elsewhere (Janes et al., 2004; Janes and Yaffe, 2006). Before all analy-

ses, the signaling and apoptosis matrices were variance scaled to nondimen-

sionalize the different measurements. Model predictions were made via cross-

validation by leaving out one of the observations, and model uncertainties

were calculated by jack-knifing (Efron and Tibshirani, 1993). So that the accu-

racy of predictions could be assessed, model fitness (R2) was calculated

according to the following formula (Gaudet et al., 2005):

R2 = 1�

2
6666664
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ðPredictedi �MeasurediÞ2
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i = 1

ðPredictediÞ2 �
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i = 1

Predictedi

�2
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3
7777775
;

where Predictedi is the prediction of the ith apoptotic output, Measuredi is the

measurement of the ith apoptotic output, and n is the total number of apoptotic

outputs. An R2 value of 1 indicates a perfect match between measured (x) and

predicted (y) apoptosis values. As the R2 value drops to zero and below, the

comparison is better fit by the equation y = 0 than y = x. Ninety percent confi-

dence intervals for model fitness were calculated by the Fisher inversion.

Model-Breakpoint Analysis

All model-breakpoint analyses were performed on the apoptosis model after

a 60� subspace rotation of the first two principal components to maintain consis-
tency with earlier studies (Janes et al., 2005). Derivation of the saturation and de-

sensitization functions is available in the Supplemental Results and Discussion.

For assessment of relative variable importance, the information content of each

signaling metric was assessed by its variable importance in the projection (VIP):

VIPk =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K
PA
a = 1

w2
akSSa

PA
a = 1

SSa

vuuuuuut ;

where K is the total number of signaling metrics, wak is the weight of the kth

metric for principal component a, A is the total number of principal compo-

nents, and SSa is the sum of squares explained by principal component

a (Wold, 1994). The change in total loadings between models a and b (Dpa,b)

was calculated according to the following formula:

Dpa;b =
Xm

i = 1

�
pb;i � pa;i

�
;

where pa,i and pb,i are the scores for the ith principal component of models

a and b, and m is the total number of principal components. Signaling metrics

were ranked by their largest positive and negative changes in total loadings,

and the significance for each molecular signal among the top 30 metrics

was assessed by the binomial test after the Bonferroni correction to adjust

for multiple-hypothesis testing.

MK2 Predictions

For wild-type MK2 predictions, the measured MK2 signaling time courses were

multiplied by the fold overexpression (Figure 6B). MK2-signaling metrics were

then re-extracted and input into the original linear model as test observations.

For prediction of the MK2 mutants, an overexpression model was explicitly

trained with measured apoptosis values for the wild-type MK2-overexpressing

cells stimulated with saturating cytokines (Figure 6E, conditions 1–6). Mutant

MK2 time courses were approximated by multiplying by the corresponding

fold overexpression (Figure 6B), re-extracting metrics, and multiplying the met-

rics by the saturation or desensitization functions with k = 0.2. Similar results to

Figure 6F were obtained when nonlinear functions were applied with k = 0.8

(data not shown).

SUPPLEMENTAL DATA

Supplemental Data include Supplemental Results and Discussion, Supplemen-

tal ExperimentalProcedures,eleven figures,andone tableandcan be foundwith

this article online at http://www.cell.com/cgi/content/full/135/2/343/DC1/.
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